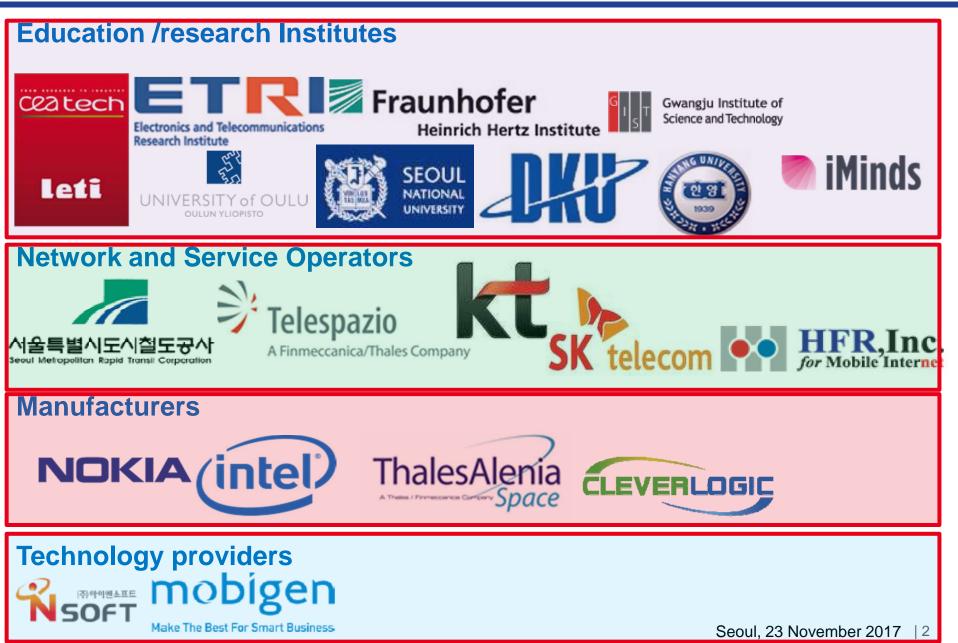


5GCHAMPION

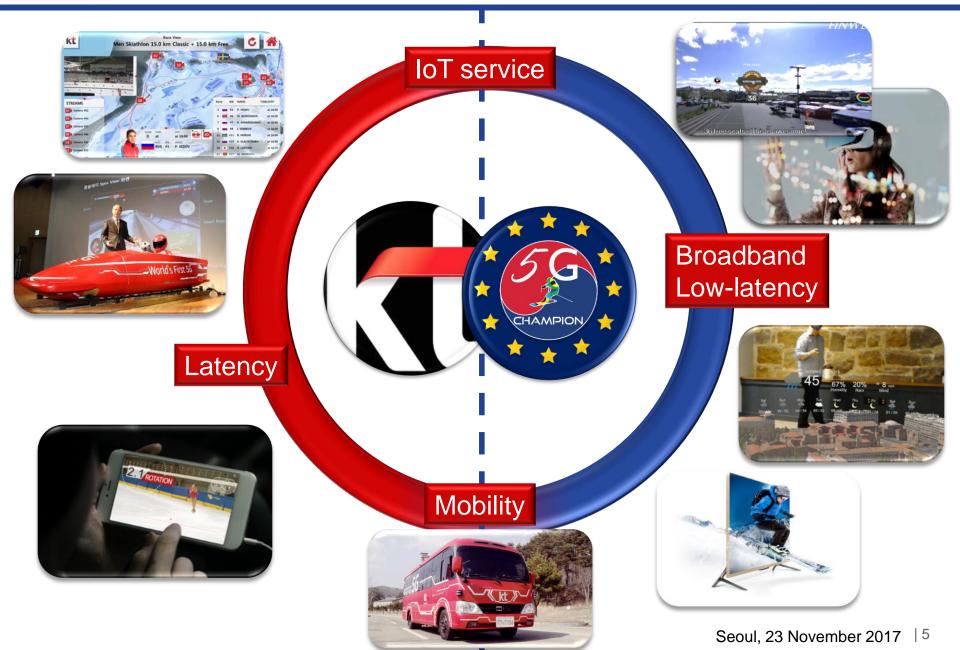
"Getting Ready for the 1st 5G system PoC in conjunction with the PyeongChang Winter Olympics"


Dr. Giuseppe Destino, University of Oulu - CWC

Dr. Emilio Calvanese Strinati, CEA-LETI 5G CHAMPION EU project coordinator

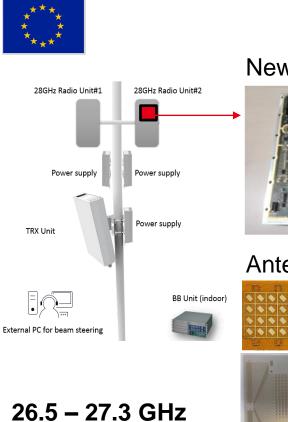
'EU Research & Innovation Day, SEOUL, KOREA -, Seoul, November 23, 2017

Key facts		2 ms latency on the air	
Consortium	21 partners	2.5 Gbit/s on mmW	
Duration	2016-2018	100Mbit/s mobile user	High ETSI
Objective	EU-KR 5G system demonstration	Broad	User 3GPP Mobility IEEE
Technology	mmW backhaul	Broadband ^{everywhere}	
	SDN/NFV core		5G Standard
	Inter-system interoperability		
KPIs	2ms latency	20 Gbit/s	
	10 Gbit/s backhaul		
	SDN/NFV	High data- rate	
	20Gbit/s indoor		5G-SAT
	5G-satellite interoperability		
	Standardisation	SDN/NF	V Extreme
Demo day	20-22 February, Gaengung	52N/N	<pre>real-time Access <1 m positioning</pre>
Workshop	23 February, Seoul		

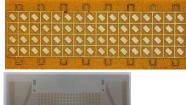


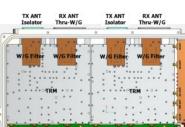
5GCHAMPION vs KT 5G show-case

5GCHAMPION Network



0.1: Provide a mmWave high capacity backhaul link with 2.5 Gbit/s minimum data-rate

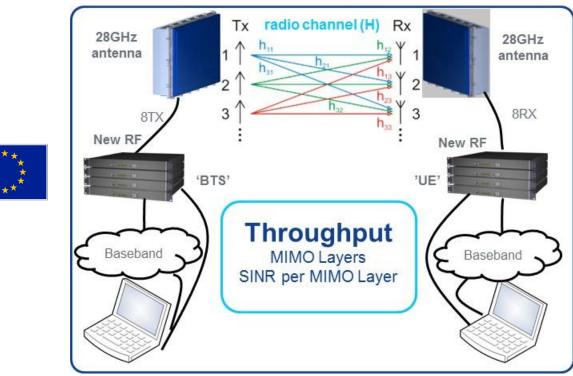

- **EU** mmW first prototype has been designed, manufactured and tested (up to 10Gbps).
- **KR** mmW platform based on a previous • prototype development. Labs test executed (up to 5Gbps).



New RF-FE

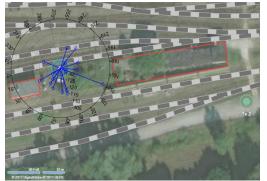
Antennas

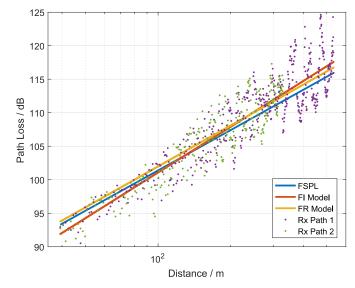
25.1 - 26.1 GHz



0.1: Provide a mmWave high capacity backhaul link with 2.5 Gbit/s maximum data-rate

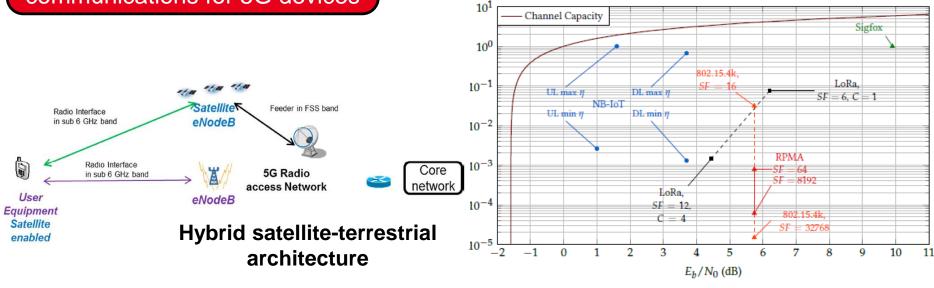
O.2: Provide up to 20 Gbit/s user data rate over a mmWave indoor link


0.1: Provide a mmWave high capacity backhaul link with 2.5 Gbit/s maximum data-rate


O.2: Provide up to 20 Gbit/s user data rate over a mmWave indoor link

O.3: Provide in the high mobility scenario a user-experience of 100 Mbit/s

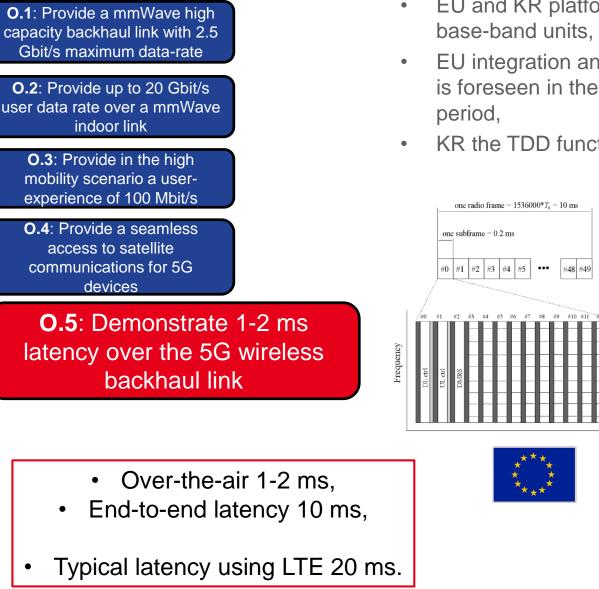
- Different activities running in parallel:
 - **Numerology** for HST defined and validated via simulations.
 - Studies on pilot signals and precoding scheme are ongoing.
 - Channel models for HST derived but not verified.
- **KR-PoC** demonstration will include **mobility**, but high-speed train is not an available resource.
 - Testing with low-mobility (bus) is ongoing

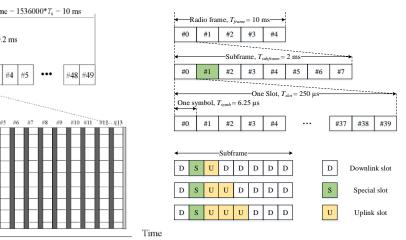

0.1: Provide a mmWave high capacity backhaul link with 2.5 Gbit/s maximum data-rate

O.2: Provide up to 20 Gbit/s user data rate over a mmWave indoor link

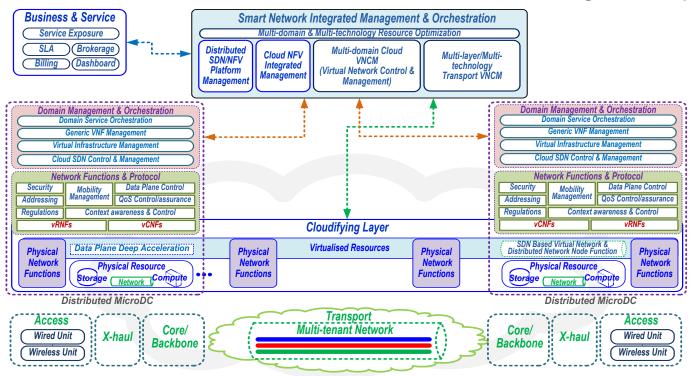
0.3: Provide in the high mobility scenario a user-experience of 100 Mbit/s

O.4: Provide a seamless access to satellite communications for 5G devices


- Link budget calculations in the S-band,
- Performance comparison of candidate 5G radio interfaces (Lora, Sigfox, etc.) by simulations,
- Definition of configuration and operation modes at transmission and MAC level,
- Definition of test cases.


Seoul, 23 November 2017 | 10

- EU and KR platforms TDD is supported by
- EU integration and testing with RF-FE units is foreseen in the first months of the second
- KR the TDD functionality.



() () ()

O.6: Demonstrate agile management of the core net. functionality and services

- For agile management, virtualize, cloudify, and distribute (low latency) EPC functionality,
- NFV/SDN-based Integrated Management & Orchestration (on-boarding NS & VNF, Lifecycle mgmt. of NS, global resource mgmt. and optimization),
- Real-time monitoring & Fast Isolation/Recovery,
- High-Performance Data Plane Acceleration via DPDK and other traffic management capabilities.

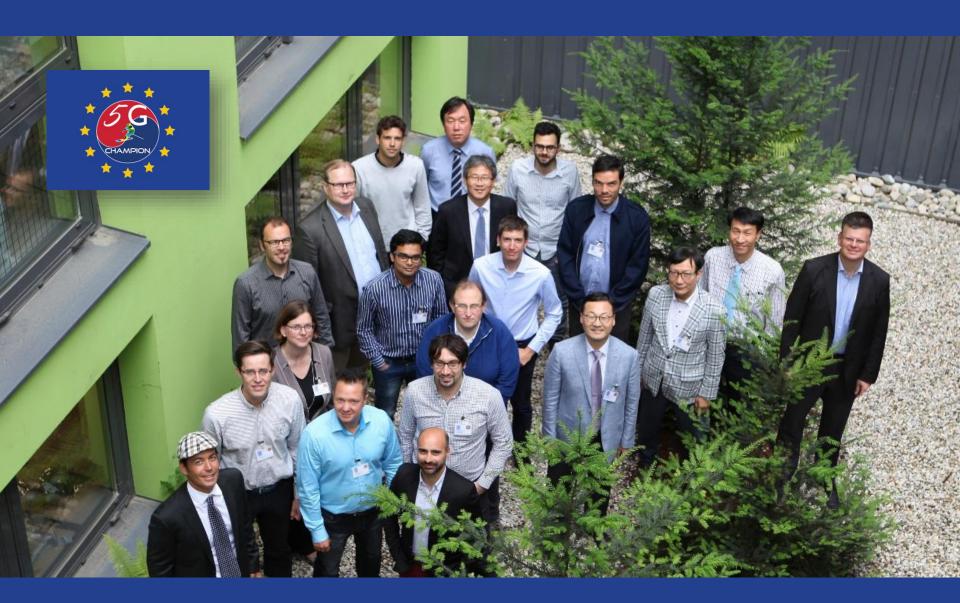
O.6: Demonstrate agile management of the core net. functionality and services

0.7: Ubiquitous (in- & outdoor) location accuracy < 1 m

- Selection of the best GNSS precise
 positioning method,
- Selection of a GNSS equipment and a reference station compatible with Galileo,
- Development of a 5G positioning algorithm,
- Definition of an algorithm combining GNSS and 5G data for positioning,
- Preliminary definition of a test bed and use cases.

GRSS receiver

GNSS base station


O.6: Demonstrate agile management of the core net. functionality and services

0.7: Ubiquitous (in- & outdoor) location accuracy < 1 m

O.8: Contribute to Global 5G standardization & regulation

ITU, ETSI, IETF, 3GPP ...

- Framework Standardization & Regulation,
- ETSI RRS (Reconfigurable Radio System) Software Reconfiguration,
- 3GPP High-speed channel model Standardization,
- IETF Distributed Mobility Management architecture for 5G contributions.

See you at the Olympics

EU platform	KR platform		
Antenna			
Wideband 1GHz	Wideband 1GHz		
Phased-array (16x4) with/without p-i-n transmitarray	Slotted waveguide array antenna (Tx: 4x4, Rx: 6x6)		
Structure 8x2 RF beamformer – with 2x2 antenna subarray in each, linearly polarized	N/A		
Maximum gain 22.7 dBi	Maximum gain 19 dBi (TX), 22 dBi (RX)		
RF-FE			
26.5-29.3 GHz	25.1056-25.5376 GHz		
Operational band at the Olympics 26.5 to 27.5 GHz	Operational band at the Olympics 25.14-26.14 GHz		
4 RF adaptive beamformers	2 TX and 2 RX paths		
Digital phase-shift control	Fixed beams		
Digital branch enable control	N/A		
Digital automatic gain control	Digital automatic gain/frequency control		
Base-band			
TDD	TDD		
8x8 MIMO-OFDM	2x2 MIMO-OFDM		
Max bandwidth: 8x100 MHz carrier components	Max bandwidth: 8x125MHz carrier components		
Modulation: UpTo 64QAM	Modulation: UpTo 64QAM		